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Abstract. We propose a natural extension of the BRST—antiBRST superfield covariant scheme in general
coordinates. Thus, the coordinate dependence of the basic tensor fields and scalar density of the formalism
is extended from the base supermanifold to the complete set of superfield variables.

1 Introduction

The principle of extended BRST symmetry applied to gen-
eral gauge theories has resulted in various schemes of co-
variant quantization [1-3]. It turns out that these schemes
can be combined within the formalism [4-6] which realizes
the modified triplectic algebra [3] in general coordinates.
The differential operators A%, V* U% that form this alge-
bra are constructed [6] in terms of a non-degenerate anti-
symmetric tensor w;;, a symmetric tensor g;; and a scalar
density p, defined on a supermanifold with a symmetric
connection (Christoffel symbols). In Darboux coordinates,
this supermanifold (base supermanifold) is parameterized
by the fields and antifields (d)A, o A) used in the quanti-
zation schemes [1-3]. It proves possible to fulfill the rela-
tions of the modified triplectic algebra in case the tensor
field w;; endows the base supermanifold with a symplectic
structure respected by the symmetric connection (covari-
ant derivative). In this sense, the base supermanifold can
be regarded as a Fedosov supermanifold [6], which gener-
alizes the notion of Fedosov manifolds [7]. The properties
of such supermanifolds have recently been studied in [8].
In the original work [4] on the modified triplectic quan-
tization in general coordinates, the authors raised the prob-
lem of a superfield description of their formalism. This task
calls for an extension of the geometric contents of [4-6] to
the complete set of variables of [1-3], which can be re-
garded as superfield components in a superspace with a
pair of anticommuting coordinates [9]. At present, two dif-
ferent approaches [10,11] to the mentioned problem have
been proposed. In [10], a superfield description of A%, V*,
U“is suggested, using a covariant differentiation in terms of
superfield variables. This formalism leaves intact the basic
ingredients of [4-6] as functions on the base supermanifold
(accordingly interpreted as a Fedosov supermanifold). On
the contrary, in [11] it is proposed to extend the structure
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of a Fedosov supermanifold to the superfield case. It turns
out, however, that the resulting Christoffel symbols [11]
cannot be regarded as connection coefficients having the
correct properties under coordinate transformations. Thus,
the approach [11] faces difficulties.

In this respect, the aim of the present work is to exam-
ine an alternative extension of the superfield approach [10].
Namely, we consider extended counterparts of the objects
wij, Gij, p, defined on the complete supermanifold of vari-
ables [1-3], and realize the operators subject to the modified
triplectic algebra in terms of such functions. In the limit
when the coordinate dependence of the mentioned func-
tions is restricted to the base supermanifold, one recovers
the structure of a Fedosov supermanifold, and the present
quantization scheme reduces to that of [10].

2 Basic objects

In this section, we recall the basic ingredients of [10],
namely, the notion of a base supermanifold, the related
construction of a triplectic supermanifold, and its super-
field formulation. In particular, we recall the basics of ten-
sor analysis on supermanifolds (for details, see the mono-
graph [12] and papers [6,8]). We use DeWitt’s condensed
notation [13] and designations adopted in [10]. Left-hand
derivatives are denoted by 9; A = 9A/dx", and right-hand
derivatives are labeled by the subscript “r”, with the corre-
sponding notation 4 ; = 9, A/dx". We assume that covari-
ant derivatives, V, and other operators defined on tensor
fields act from the right: AV; besides, when necessary, the
action of an operator from the right is indicated by an ar-

row: V. The Grassmann parity of a quantity A is denoted
by €(A).



592

2.1 Triplectic supermanifold

Let us consider asupermanifold M, dim M = N = 2n, with
local coordinates (z¢), €(z') = ¢;. We now extend M to
a supermanifold M, dim M = 3N, with local coordinates
(x%,0?), where the additional coordinates 6% are combined
into Sp(2)-doublets (labeled by the index a = 1,2) and
possess the Grassmann parity, 6(93) = ¢; + 1, opposite to
that of 2. We demand that the coordinates 6, transform as
vectors under a change of coordinates on the supermanifold
M, indeed,*

On the supermanifold M, one defines a tensor field of
type (n,m) and rank n + m as an object which in any
local coordinate system (x, 0) is given by a set of functions

7 7

Tt (@, 0)  with Grassmann parity (7" . )
=€(T)+e€, +...+€, +€j,+.. .+¢;,,, that transform under
a change of coordinates (x,0) — (Z,0) as a tensor field,
of the same rank and type, defined on the supermanifold
M, namely,
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Accordingly, a covariant derivative on M is defined as
M
an operation V; that maps a tensor field of type (n,m)

into a tensor field of type (n,m 4 1) and reduces to the
usual derivative 0, /0z" in a local Cartesian system on M.

M
Explicitly, the operation V; has the form of a #-extension
M
of the covariant derivative V; on the supermanifold M,

M M

9
Vo=V- o (-

aok i 1)€7n(5k+1). (1)

M
where V; maps a tensor field 7" g (@) of type (n,m)

into a tensor field of type (n,m + 1) according to
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! In [4- 6], the supermanifold M is parameterized by co-
ordinates (z°, 0ia), where 0;, transform as covectors, namely,
Bia = 01 a o
(z%,0%) is used, since it is more convenient for a superfield
formulation (see Sect.2.2).

. Instead, in the paper [10] the parameterization
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In (1) and (2), the functions " * ;;(z) are generalized Chri-
stoffel symbols (connection coefficients), having the trans-
formation law
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In case a local Cartesian system on M does exist, the

_ (71)61-(6"&61-

M
connection coefficients I'* i
(generalized) symmetry:

;(x) possess the property of

M M
Fkij = (‘Ueiejfkji

With this in mind, the consideration will be restricted
to symmetric connections.

Since x' and 6 are independent coordinates, the ex-
pressions (1) and (2) imply that the vectors 6% are covari-
antly constant:

6V, =0, (3)

From (1) and (3), it follows that a (generalized) commutator

M M M M M M
[V, V] = V,;V,; —(—-1)%%V,V,, acting on a scalar field
T (x,0), can be written as
M M € € a T m n
TV, = () S Ry )
where R k( x) is a curvature tensor on the supermanifold

M, defined by the action of a commutator of covariant

M .
derivatives V; on a vector field T" (x) according to

.M M M .
TV, Vi) = ()T

mjk *
The curvature tensor has the explicit form

M .

M ,
R’ -re m]k+F mk]( 1)6J6k

mjk =
+Fijlflmk(_1)6j€m
M 1 M l er(em—te;)
-I le mj(_l) pREm T y (5)
and obeys a property of (generalized) antisymmetry and
a (super) Jacobi identity:

M . M .
i _ cjer Rt
R mjk — _(_1) ! mkj

M
(=1D)9“R" ;1 + cycle (j, k,1) =0
In what follows, we call M and M the base and triplec-

M
tic supermanifolds, respectively, and refer to V; as the
triplectic covariant derivative.
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2.2 Superfield description

The complete set of variables arising in various quantization
schemes [1-3] based on extended BRST symmetry can be
presented as (¢Aa &Aa 772/14’ ¢*Aa,7 )‘Av JA) = ('r ’aaa Y )7
1,2,..., N =2n, e(2?) = e(y') = &, €(0%) = e + 1. ThlS
set con51sts of the field-antifield variables (¢, da, ¢%,),
Lagrange multipliers (72, \4), and sources J 4 to the fields.
In the superfield formulation [9 [9] of extended BRST sym-
metry, the variables (z¢, 0%, y*) are regarded as components
of superfields z%(n) in a superspace with Grassmann coor-
dinates 7,

% % api i 1 a
Z(n) =" + 00 +n*y', 0’ = "

where raising the Sp(2)-indices is performed with the help
of the antisymmetric second-rank tensor £%°: n® = %,
ey = 0f.

Let us 1dent1fy the components (z%,6%,y*) with local
coordinates on a supermanifold A/, dim N/ = 4N, where
the submanifold with coordinates (mﬂ@é) is chosen as a
triplectic supermanifold. At the same time, we define the
transformations of the additional coordinates gy*, that ac-
company the transformations (x,0) — (z,0), to be trivial:

0i=01" | =yl (6)

By analogy with the triplectic supermanifold M, a
tensor field of type (n,m) and rank n 4+ m on the su-
permanifold NV is defined as an object which in any local
coordinate system (z,0,y) is given by a set of functions

b (z,0,y) =T" " . (z) that transform as a
tensor ﬁefd on the base supermanifold M. With this in

mind, one can define on A a superfield extension D; ()

of the triplectic covariant derivative AVAZ Namely, one in-
troduces D; (n) as an operation that maps a tensor field
of type (n,m) into a tensor field of type (n,m + 1) and
reduces in a local Cartesian system on M to the superfield
derivative?

9 9, 0
9zi(y) ot T agi ™

defined with respect to variations 0z%(n) = dz* 4+ n®66;,
induced by (z,0,y) — (Z,60, 7). The derivative D; () has
the explicit form

¢, 9
Dil) = Vi + e (")

where each term of the n-expansion transforms as a covector
with respect to (x,0,y) = (Z,0,7).

Using D; (n), one can rewrite the equalities (3) and (4)
in the form

0zt
a al

D; (n") = &ms (8)

2 As usual, we assume that 0T (=
[&n=[dnn* =0, [d®nn*n® =&

fdzna‘Z*(Tn) §z(n) and

593

T[Di(n'), D;(n")] (9)

— (_ €m (en+1)/,7\2 11\2 w 0zm an
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8,'7//(1

mij )

M
where T (z) is a scalar field, and R "
ture tensor (5).

mij () is the curva-

3 Extended superfield realization
of (modified) triplectic algebra

In this section, we shall apply the above ingredients in order
to construct an extended realization of the triplectic and
modified triplectic algebras [2,3]. To this end, we recall
that the triplectic algebra [2] is formed by two doublets of
first- and second-order operators, V' ¢ and A%, respectively,
having the Grassmann parity e(V*) = €(A%) = 1 and
obeying the relations

Aleatt — g yleyd =g
VAAY + APV =0, (10)
whereas the modified triplectic algebra [3] involves an ad-
ditional doublet of first-order operators eU*) =1
and has the form
Alea® =9, vieytt =0, vlu® =o,

vieatt 4 altyel — o aAlay® 4 glea®? =,

Uley®t 4 yiagh = o, (11)
In (10) and (11), the curly brackets stand for symmetriza-
tion with respect to the enclosed indices.

Using the second-order operators A%, one can define a
pair of bilinear operations (, )%,

(F,G)" = (1) (FG)A°
—(—D)NFAYHG - F(GAY). (12

which form a set of antibrackets, similar to those introduced
in the Sp(2)-covariant formalism [1]. Thus, the operations

(, )* possess the Grassmann parity e((F,G)?%) = e(F) +
€(G) 4+ 1 and obey the symmetry property
(F,G)* = —(— )(e(G)+1)(€(F )+1) (G F)e,
as well as the Leibniz rules
(F.GH)" = (F,G)"H + (F, H)*G(=1)"©D,
(F,G)*D" = (F,GD*)" — (FD*,G)" (-1)<(9),
D ={A%, UV} (13)
and the Jacobi identity
(F, (G, H){a)b}(,1)(6(F)+1)(6(H)+1)
+cycle(F,G, H) = 0. (14)
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In general coordinates, the operators (10), (11) and
antibrackets (12) can be constructed [6,10] in terms of a
scalar density p (x) and tensor fields w;; (), ¢;; (=) defined
on the base supermanifold M. At the same time, within the
superfield description [10] the objects p, w;j, gi; are iden-
tified with some functions R, §2;;, G;; formally defined on
the larger supermanifold A. In contrast to the treatment
of [10], we shall present a superfield realization of (10)—(12)
in terms of extended counterparts of p, w;;, gi;, inherently
defined on the supermanifold A. The corresponding quan-
tization procedure then follows the approach [10].

3.1 Extended realization

Let us equip the supermanifold N' with an even scalar
density R(z), as well as with even tensor fields G;;(z) and
£2;j(z), the latter having the inverse® 0%(z), €(Gi;) =
€(.Qij) = G(Q”) =€ + €5,

QR (—1) =57, Q*Q(—1)* = i

L (1)

We demand that the fields G;;(z) and £2;;(z), £2%(z) obey
the following properties of generalized (anti)symmetry:
Gij = (1) Gji,

Qij = —(—1)Eie-7 .jS =4 Qij = —(—1)€i€-7 le

At the same time, we require that 2;;(z) and £2%(z) be
covariantly constant with respect to the superfield deriva-
tive D; (), namely,

2;;Dy, =0 & YDy, = 0. (16)
Using the objects R(z), 2% (2) and the derivative D;(n),
one can construct a superfield Sp(2)-doublet A* of odd

second-order differential operators, acting as scalars on
the supermanifold N,

Za = /dan (%z + ;(R%z)) ) (17)

where D?(n) is a superfield derivative,

20D 0
Ona 8772

D' =D; V" & D; =D/ 2;,(—1),

which transforms as a vector on A. In accordance with
(12), the operators (17) generate a doublet of superfield
bracket operations:

(FD%) 0(GD;)
om*  Ona
_(_1)(6(F)+1)(6(G)+1)(F - G).

9 .
(F,G)* =— [ &*nn? (—1)5e@

(18)

3 In the supersymmteric case, the contraction rules for tensor
indices as well as the definition of a non-degenerate tensor can
be found in the monograph [12] and papers [6, 8].
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Using the fields G;;(z) and £2;;(2), one can also equip
the supermanifold A~ with the superfield objects Sy and

Sab
1 o o 0pzt | 0p20 B
So = 2/d g Gij o €(So) =0,
1 0,2 Op27
Sap = —= [ d*nn? =02 ==, €(Sap) =0, (19
o= =g [P G 0TS S =0, (19)

invariant* under local coordinate transformations, Sy =
S0, Sap = Sap. Here, Sy is an Sp(2)-scalar, whereas Sy
is an Sp(2)-tensor, symmetric with respect to its indices,
Sab = Sba-

Using Sp, Sqp and the bracket operations (, )%, we define
the Sp(2)-doublets of first-order odd differential operators

V% and U%:

L b__;/ , ,0D; 8,7
Vo= (sw)=—5 [aenrGga. @)
. . oD | o,
U= (-5 =/C1277772 £ ijaina(_l)l
18,20 O G D) gk
1 2 (CuP) oct (21)

2 6771) 67711 87771)

19,019,299 (GD:) g4
2 On, Onb On? ony

(_1)61(6]64*1)

The objects in (17)—(20) are formally identical with
those arising in [10]. At the same time, the doublet of
first-order operators (21) is an extension of its counter-
part from [10]; namely, it contains an extra term with the
expression 0, (G;;Dy) /On,, related to the additional vari-
ables present in Gj;.

By straightforward calculations (see Appendix A), tak-
ing into account the expressions (17) and (20) for A*, V¢
and the properties (8) and (9) of the derivatives D;(n), one
can show that the triplectic algebra (10) is fulfilled if the
scalar density R(z) is chosen as

R = —log sdet (£27), (22)
while the tensor fields (2;;(z) and £2%(z) obey the Ja-
cobi identities

0r82;; _ .
8sz (1) +cycle (i,5,k) =0
9Tk
e 0! 0 (=1)% + cycle (i,4,k) =0, (23)

0z!

4 Despite the fact that the transformation law (6) for the
coordinates z*, 6%, y* obviously does not result in a covariant
transformation for the superfields z'(n), the objects So and
Sap are scalars under (6) due to the presence of the multiplier
n? in the corresponding integrands (19), which cancels the
9z"

OMa *

non-covariant contributions from
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and the curvature tensor (5) of the base supermanifold M
is zero:

M'L'

Now that the triplectic algebra (10) and the related an-
tibrackets (12) have been explicitly constructed, the Leibniz
rules (13) and the Jacobi identity (14) are obviously ful-
filled. Due to (10), in order to complete the construction
of the modified triplectic algebra (11), it remains to ensure
the fulfillment of the relations involving the operators U®.
In this respect, the definition (21), namely, ﬁ“ =(-,50)%,
as well as the just mentioned properties (13) and (14), im-
ply that the modified triplectic algebra (11) holds true in
case the function Sy is subject to

(24)

(S0,50)* =0, SV¢ =0, SpA*=0. (25)
The consistency of these equations is implied by the prop-
erties (10) and (12) of V*, A% and (, )*, which are encoded
by the conditions (15), (16), (22), (23) and (24), imposed
on R, §2;; and on the base supermanifold M. The geo-
metric interpretation of conditions (23) will be given in
the following subsection, with allowance for (16) and (24).
Returning to (25), we note that they always possess non-
vanishing solutions (see Appendix B); however, since the
following treatment does not require any special choice of
such solutions, we merely assume that the relations (25)
are fulfilled.

3.2 Quantization rules

Having constructed an explicit realization of the differential
operators A%, V¢ U® and antibrackets (, )%, we are in a
position to set up a quantization procedure. This procedure
repeats the BRST—antiBRST superfield covariant scheme
in general coordinates [10] and has the same features. Thus,
the vacuum functional is defined as

7z - / d= Dy exp{(i/B)[V + X +aSel},  (26)

with « being an arbitrary constant and the function Sy
given by (19). The quantum action W = W (z) and the
gauge-fixing functional X = X (z) obey the quantum mas-
ter equations

1
5 (VW) 4+ WV? = in A,

1

i(X,X)“—i—XL{“ = ih X A°. (27)
Integration in (26) goes over the components of supervari-
ables, dz = dxdf, dy, and the integration measure D
reads

Dy = [sdet (277)] /2.

In (27), we use the operators

(28)

1
V' = (U + BV +4U"),
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1
U = 3 (U — pV* —~U?).

with the properties
viepdt — o, yloy® =0, vieydt 4 ytopdt = o,

that hold true for arbitrary values of the constant param-
eters a, 3, v, which implies that the operators A®, V* U®
also realize the modified triplectic algebra.

The integrand of (26) is invariant under extended BRST
transformations, with the generators

5= (W = X)* +V* — U,

which implies the independence of the vacuum functional
(26) from a choice of the gauge-fixing function X (for ar-
bitrary «, 3, 7).

Let us establish a relation between [10] and the present
quantization scheme in more detail. To this end, we intro-
duce the notation

‘QZJ(Z) = wij(z707y)a
R(Z) = ,0(% oay)’

and examine the special case w;; = w;j(z), ¢ = g;5(x),
which, in view of (22), implies p = p(x), so that the objects
wij, Gij, p are restricted to the base supermanifold M, as
in the formalism [10].

~ From (16) and (23), it follows that w;;(x) and its inverse
w'(x) are subject to

M

M
wijvk =0 WV, = 0, (29)
wijk(—=1)* + cycle (i,7,k) =0

& WGk (—1)%* 4 cycle (i,5,k) =0,  (30)

and therefore w;;(z), w*(z) are identical to the antisym-
metric fields of [10]. Geometrically, (30) implies that w;;(x)
and w* (z) equip the base supermanifold M with an even
symplectic structure and with a Poisson bracket, respec-
tively [6]. At the same time, (29) ensures the covariant con-
stancy of the even differential two-form w = w;;dz’ A dz?,
so that M is interpreted as an even Fedosov supermani-
fold [6,8], i.e., an extension of Fedosov manifolds [7,14] to
the supersymmetric case. We also observe that due to the
subsidiary condition (24) the Fedosov supermanifold M is
flat, as in the case of [10].

In the case w;; = wij(x), gi; = gij(x), the equalities
(17)—(22) and (28) imply that the functions Sy, Dy, the op-
erators A% V* U® and the antibrackets (, )® are reduced
to the corresponding ingredients of [10]. In this respect, we
note that U® are reduced to their counterparts of [10] due
to the equality

/ d*nn*f(n)

which holds for g;; = g¢;;(z), with an arbitrary function
f(n). Consequently, in the case of w;;(x), gi;(x), (27) are
identical with the master equations of [10], and thus (26)
reduces to the vacuum functional of [10].

0(Gi;Dy)

p— ()7
M
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4 Conclusion

We have presented a natural extension of the recently pro-
posed BRST—antiBRST superfield covariant scheme in gen-
eral coordinates [10]. Thus, the coordinate dependence of
the basic ingredients of [10], being the scalar density p and
tensor fields w;j, gij, has been extended to the complete
set of supervariables used in that formalism. In terms of
the extended objects, R, £2;;, G;;, we have explicitly real-
ized the differential operators A%, V¢ U%, subject to the
modified triplectic algebra, and constructed the related
antibracket operations (, )®. The corresponding quantiza-
tion procedure follows [10] and has the same general fea-
tures. Thus, the formalism contains free parameters («, 3,
), whose arbitrary choice yields a gauge-independent vac-
uum functional and, consequently, a gauge-independent S-
matrix [15]. In the limit when the extended objects R, (2;;,
G; are reduced to the original ingredients of [10], namely,
P, Wij, 9ij, the present quantization scheme becomes iden-
tical with the approach [10], and, therefore, reproduces
(for a specific choice of the parameters «, 3, v in Darboux
coordinates [6,10]) the previously known schemes [1-3] of
covariant BRST-antiBRST quantization. It appears inter-
esting to combine the considerations of the present work
with the ideas of the recent paper [11], which proposes to
enlarge the structure of a Fedosov supermanifold to the
case of superfield variables. Such an opportunity, however,
is impeded by the problem of a consistent superfield ex-
tension of connection coefficients [11].
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Appendix A: Triplectic algebra

Let us examine the algebra of the differential operators A®
and V*, as acting on scalars defined on the supermanifold
N. Using the expressions (1), (2) and (7), the properties
(8) and (9), and the definitions (17) and (20), we obtain

Alapby
0, DI 9D?
_ d2 /d2 " i AN/
JERLTRERCREE o
19, D" o [ ity oD;  ID;
iwf{ |:BZ (77,777”) 8,'7//2 877/12 17 ("7/777”)
1 pya 07

5 gy Bia (0'sn") = (1) Byi (o 0"
1 . 0 (RD;
+ §ng} (77/, n//) én”zj)] }77/277//27
yieyb}

1 Orzl 0z
— _1 /d277’d277/,-'4ij (77/777//) o 22 2

ony o, T
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2 (A" VP +vPA%)

1 o 0. D 927
- _ d2 /d2 /" i ro - angz T
[ {ag ot (e + S 05

w 0D 0 0,824
on'"> o 927 (n')

oD (1 M e

~on (Bij (") = Tk, (1)t ty

2
—1—]‘14'[;‘3/\]{ ik (_1>5j(5i+5k)+5k(5i+1))

+ 309 (RD01)| (1)

(A1)

027 n/2 77//2
ony! ’

with the following notation:

o 0
o2 o [Di(n'), Di(n")],
0(RDj) 0, D!
o o
0(RD;) 0D;
W an//2 :

A (', n") =

% AW/
B (n',n")

Bij (n',n") (A.2)

We now subject the function R (z) to the equations

0.0 1 .. O.R
7“‘ 701] 7“ _1 €
(azﬂ w2 5 (n)) (=17 =0,

which, in view of (15), are equivalent to

(A.3)

Ik
87‘72 _ 2 a’r sz(_l)sj-'rek

dzi(n) " 9zF(n)

To solve these equations, we use the consequence of the
Jacobi identities (23)

0, £k

Oy ik
53 52 )

(_1\&iter —
0zF(n) £2;:(=1)

)

and obtain the equality

0. R o,k
T = . A4
o2 (m) M ) (A-4)

Thus, the function R (z) can be chosen as
R = —log sdet (Qij) ,
since its variation has the form
0R = —log sdet (Qij + 5(2”) + log sdet (Q”)
= —log sdet (&% + (—1)“12;,6627)
= —str [(—1)“$2;,002%7]

= — ;00" (A.5)
From (1), (7), (16) and (A.5), it follows that
OrR
R,Dl n)— - A.6
) = 5o (A6)
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3T (ij'Dl) oz™

2,
an Ona one !

_1)€m(€z+1) =0.

mi(

Then, due to (2), (7), (16) and (A.4), one obtains

{QWDi

1 1o}
= 3%ge

o, (2MD,,) 92" M

—n ( )az me(_l)en(em+1)
Ong on®

_kalj\{jmi(_l)em(EjJrl)

_ Qmj]\]{k ‘(_1)€7n(5j+€k+1)+5j5k‘| }

=TI (-1)%9. (A7)
In view of (A.2), the properties (A.6) and (A.7) imply
ia 2 _
B (n',n")n"* =0,
BZJ (n/’ n//) _ (_1)5L5] BJ’L (,'7/7,'7//) — ()7

/AN Mk Mle €k
Bij (n',n ):2(Fk‘i,j_rklpij> (=)™

(A.8)

Now, with the help of (5), (A.3) and (A.6)—(A.8), the ex-
pressions for A{* A%} and A®V? + VPA® in (A.1) can be
written as follows:
Aleab
_/dzn/d277//-/4ij (77/777//)

2(AVP +VPA?)

9, DI 9D'
- ; ,'7/277//27
oy Oy,

_ _/d277/d277“-/4ij (77/’77/,)

1 9, Dt 027
X (25‘”’()37 o i ) 2 ”2 (A.9)
oD M Oz .
2,712 k 2 112 er(ei+1)
/d 'd*n” " —R ikj 77” n"*n" (=1)"* .

We recall that the commutator of derivatives D;(n), act-
ing on scalars defined on the supermanifold A, is given
by (9). Then, due to (A.1) and (A.9), we can see that if

the base supermanifold M is chosen to be flat, R ikt =0,
the supermanifold N admits an explicit reahzatlon of the
triplectic algebra (10). As a consequence, the bracket oper-
ations (18) obey the properties (13) and (14), so that these
operations can be interpreted as extended antibrackets.
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Appendix B: Modified triplectic algebra

Let us examine the existence of non-vanishing solutions
to equations (25). To this end, we recall that the function
So has the form (19), whereas the operators A%, V¢ and
antibrackets (, )® are given by (17), (18) and (20). Using
the properties (8) and (9) of the derivatives D;(n), we obtain
the equations

(SO;SO)a — /d277/d2,r]//

arzj a(SODk) 2. 112

(ei+1
an. o (—1)(E+Y
b a

(GUD’% )
a 1 2,132, 11
SoV =1 d*n'd*n

% 8Tzi 8(GUD;€) 5‘rzj 8Zk
an/b 8’17”2 6771/; 877:1/

SoAa — /d2n/d2n1/
o 0,2 0
677 6,,7//2
}arzz Oy (Gl‘j'Dk) 0z1 9
2 8771/; an// an/b 37’//2

77/277”2 (71)5j5k _ 0’

“G”Dﬁ+-Ch(RDQ]

[Dk+» (Rpkﬂ( fﬂﬁ+”}nan” 0. (B.1)

In view of the complexity of these relations, it is natural
to examine some simplified restrictions that ensure the
fulfillment of (B.1). For example, imposing the condition
of covariance

Gijpk =0& Gijpk =0 (B2)
and the subsidiary condition
. 0,123k
Gij (R'D]) =0« Gijw(—l)ek =0, (BS)

we can see that (B.1) become identities. Note that (B.3)
formally coincides with a subsidiary condition used in [10],
whereas the equivalence in (B.3) is due to (A.4) and (A.6).
The simplest example of solutions to (B.2) and (B.3) can
be found in the class

Gij = 9ij(y), 2i5 = wij(y),

where g;;(y) and w;;(y) are arbitrary (in particular, con-
stant) functions of the auxiliary coordinates y*. Another
example may be found in the class of functions G;; = g;;(x)
and Ql‘j = wij(x),

a=1,...

955V =0, w(=1)% = (), ,m, m<2n,

where C(i @) stand for a set of zero-eigenvalue eigenvectors of a
degenerate matrix g;;. Since (B.2) and (B.3) are apparently
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not equivalent to the original set (B.1), the solutions of
(B.1) are not necessarily exhausted by those of (B.2) and
(B.3). For instance, in order to analyze the non-trivial
case of non-degenerate solutions G;; = g¢;;() it may be
necessary to examine the original set of equations (B.1).
This problem could be tackled by the formalism of normal
coordinates recently used in [8] to investigate the structure
of Fedosov supermanifolds.

References

1.

2.

I.A. Batalin, P.M. Lavrov, [.V. Tyutin, J. Math. Phys. 31,
1487 (1990); 32, 532 (1990); 32, 2513 (1990); P.M. Lavrov,
Mod. Phys. Lett. A 6, 2051 (1991); Theor. Math. Phys.
89, 1187 (1991)

I.A. Batalin, R. Marnelius, Phys. Lett. B 350, 44 (1995);
Nucl. Phys. B 465, 521 (1996); I.A. Batalin, R. Marnelius,
A.M. Semikhatov, Nucl. Phys. B 446, 249 (1995)

B. Geyer, D.M. Gitman, P.M. Lavrov, Mod. Phys. Lett. A
14, 661 (1999); Theor. Math. Phys. 123, 813 (2000)

B. Geyer, P. Lavrov, A. Nersessian, Phys. Lett. B 512, 211
(2001)

10.

11.

12.

13.

14.

15.

. B. Geyer, P. Lavrov, A. Nersessian, Int. J. Mod. Phys. A
17, 1183 (2002)

B. Geyer, P. Lavrov, Int. J. Mod. Phys. A 19, 1639 (2004)
B.V. Fedosov, J. Diff. Geom. 40, 213 (1994); Deforma-
tion quantization and index theory (Akademie Verlag,
Berlin 1996)

B. Geyer, P. Lavrov, Int. J. Mod. Phys. A 19, 3195 (2004);
A 20, 2179 (2005); Basic properties of Fedosov super-
manifolds, hep-th/0406236; P.M. Lavrov, O.V. Radchenko,
Higher order relations in Fedosov supermanifolds, hep-
th/0503221

P.M. Lavrov, Phys. Lett. B 366, 160 (1996); Theor. Math.
Phys. 107, 602 (1996); P.M. Lavrov, P.Yu. Moshin, Phys.
Lett. B 508, 127 (2001); Theor. Math. Phys. 129, 1645
(2001)

B. Geyer, D.M. Gitman, P.M. Lavrov, P.Yu. Moshin, Int.
J. Mod. Phys. A 19, 737 (2004)

B. Geyer, P. Lavrov, A. Nersessian, A note on the supersym-
plectic structure of triplectic formalism, hep-th/0406201
B. DeWitt, Supermanifolds, 2nd ed. (Cambridge University
Press, Cambridge, 1992)

B.S. DeWitt, Dynamical theory of groups and fields (Gor-
don and Breach, New York 1965)

I. Gelfand, V. Retakh, M. Shubin, Advan. Math. 136, 104
(1998); dg-ga/9707024

I.V. Tyutin, Phys. Atom. Nucl. 65, 194 (2002)



